Page 1
Standard

A keyboard with swappable switches

It started out with a post to Reddit that linked to a series of photos on Imgur of a new keyboard the user had ordered from the Chinese e-commerce site Taobao. Taobao, for those who don’t know, is a Chinese-language-only e-commerce site run by Alibaba Group that caters to residents of China and nearby countries where people speak Chinese. Many sellers on the site, even if you could navigate the site in Chinese, won’t ship outside of China. To meet demand, a whole crop of sites have sprung up just to help foreigners order products from Taobao. These ‘Taobao agents’ will order the product for you, receive the product in China, and then re-ship it to you wherever you are in the world. Of course, that service comes with a price, and in many cases that eliminates any cost savings you might get from ordering from Taobao. Occassionally, however, there are products on Taobao that are not available elsewhere. In this case, the user (redditsavedmyagain) ordered a keyboard that was in fact quite unique.

The keyboard is called the Team Wolf Zhuque+. I had never heard of it and before that post on Reddit most other people had never heard of it either. The keyboard was made of Aluminum, had folding feet on the bottom that could be used to angle the keyboard, and had LED backlights. Most interestingly, the keyboard was configured to allow switches to added without soldering (and removed without desoldering). The keyboard comes with blue Gaote Outemu switches, made special for the SMD LED underneath the switch. Most LEDs in keyboards go on the top of the switch, with the wires going through holes in the switch and then soldered to the circuit board underneath. Since this keyboard allows the switches to be removed, the LEDs are surface-mounted to the circuit board and have no connection to the switch. This is nice, but presents some problems. For one, the light is below the switch instead of on top of it, meaning the switch itself needs to either be transparent or have a hole to allow the light through. Also, since most switches are not designed with SMD LEDs in mind, they may not have enough room at the bottom for the LED. The Gaote switches used in this keyboard are specially designed for these kinds of LEDs, and are recessed at the bottom to leave room for the LED, have an extra large hole to allow light through, and while the bottom of the switch is white plastic, the top is transparent. This allows the light lots of room to shine.

Two things about the keyboard got users excited on Reddit. First, the swappable switches. It’s not the first keyboard to have swappable switches, but it definitely is one of the first. The second reason was the price. The keyboard cost only about $30-$40. That’s more or less unheard of for a metal-frame mechanical keyboard, especially one including Cherry MX-compatible switches. While lots of people on Reddit wanted to order the keyboard, they ran into a problem – there was no easy way to order it without speaking Chinese and probably having a shipping location in China. Some managed to do it, but most could not. Instead, something interesting happened. Users recruited representatives of Massdrop on Reddit to look into putting together a group buy on their site. That came together very quickly. Massdrop contacted the manufacturer, and offered two versions of the keyboard, the same TKL version shown on Reddit, and a Full Size keyboard as well (if you don’t know the difference between TKL and Full Size, see my article How many keys are there on a keyboard?). In addition to the keyboard, Massdrop allowed the user to bundle Gateron switches that were similarly configured to the Gaote switches, designed for use with SMD LEDs. The Gateron switches similarly had a gap for the LED, larger holes above the LED, and transparent tops. Massdrop offered the switches in a variety of types (brown, red, black, etc.) for $30 for a set. The price of the TKL keyboard was $59 (and an extra $20 for the Full Size) and while shipping in the US wasn’t too expensive, outside the US the shipping came to $30. That brought the price of the keyboard that was somewhere around $30-$40 on Taobao to $89 to people outside the US. A lot of people were annoyed at the big price hike. Of course, most people couldn’t order on Taobao, and certainly couldn’t get SMD LED compatible switches to go with the keyboard (specialist switches like this are incredibly hard to find in small volumes).

Another option popped up at the same time. Chinese site Banggood.com also followed the post, and offered the same TKL version from the original post for $59 on their site, including shipping anywhere in the world. While the Massdrop deal might be better in the US considering it could be bundles with extra switches and you could get the Full Size version, the Banggood deal was better for most people outside the US as the price was the same and the shipping was free.

One big difference between Massdrop and Banggood in terms of this keybaord, is that Massdrop sold a set amount, and now you need to wait until Massdrop decides there’s enough interest to have another group buy for the keyboard. Banggood is a normal e-commerce site, and you can still buy the keyboard from them for $59. As long as there is interest in it, presumably they’re continue to replenish stock.

So I bought a keyboard through BG. It’s true that I can’t find the special SMD LED switches myself, but I read that other switches could work. I happened to have a bag of normal Gateron switches, and figured I could make them work. If not, I could always use the keyboard with the Gaote switches it came with.

This is what the keyboard looked like on arrival:

Close up of Team Wolf keyboard with original keycaps

For more (and better) images see the original photos on Imgur linked to from Reddit, as well as another review on Imgur (I can’t find the post that linked to this review).

So a few things about the stock appearance. Note the white keycaps with translucent legends. The stencil-like appearance of the legends is, how do I put this, not very appealing. I I like the FN (function) key that lets me use all the secondary functions, such as the media keys and the backlight controls.

The keyboard comes with a keycap remover, and a switch remover. The keycap remove wasn’t particularly good, but I had a different one which made it easier to remove all the keycaps:

Team Wolf keyboard close-up with keycaps removed

The switches are blue tactile clicky Gaote Outemu switches. Note the bottom half is white plastic, and the top is transparent. The first thing I noticed when I removed the keycaps was that the switches are mounted upside down. It took me a few moments before I realized all the keycaps I had removed had their legends on the top half of the keycap. The switches were mounted upside down so the opening for the LED underneath the switch would be underneath the legends. Normally the LEDs that are mounted on top of a switch are on the lower half of the switch, so in order to have the light on the top half of the keycap they needed to be upside down.

The next step was removing the switches from the keyboard. In a normal mechanical keyboard, you would need to desolder the switches from the circuit board, and then remove the switches. A normal switch has two contacts that would have to be desoldered. If there were LEDs, depending on the type, you would need to desolder either two or four contacts. That’s per switch. These LEDs have two contacts, so four contacts per switch, times 87 keys, is 348 contacts to desolder to replace all the switches in a normal mechanical keyboard of this size. I’m okay with soldering, but let me say that I hate desoldering. That’s one of the reasons this keyboard appealed to me. Here’s the switch removal tool that comes with the keyboard. It takes all of a couple of seconds to remove the switches:

Removing a switch

Removing the switches leaves you with an empty space in the top plate over the circuit board. Below you can see the four arrow key switches removed, with one of them flipped over so you can see the bottom of the switch. Note the two contacts, and the receiving point in the circuit board those would go into. You can also see the LED mounted on the circuit board, and the big hole in the switch which goes over that LED. The big circle in the middle of the switch is there to help hodl the switch in place, and you can see the corresponding hole in the circuit board where that goes.

Switches removed with one upside down

A look at the keyboard with all the switches removed. You might notice that the LEDs for some key locations are different than others. That’s because the LEDs are different colors. The letters and the right-side keys all have blue backlighting. The modifier and function keys all have white backgrounds, while the number keys have green backgrounds. The stabilizers, the white plastic pieces on either side of the large key locations (Backspace, Return and Shift) are not a type of stabilizer that I had ever seen before, but luckily they worked just fine with the other set of keycaps I wanted to use.

Team Wolf keyboard with switches removed

Before putting in new switches, I wanted to see what was on the back of the circuit board. I removed all the screws and removed the top plate and circuit board, and then flipped it over. You can clearly see the black units that receive the switch contacts:

Bottom of Team Wolf circuit board showing switch receivers

Here you can see the side of the circuit board that sits underneath the right side of the keyboard, where everything that makes the keyboard tick is placed:

Bottom of Team Wolf circuit board showing resistors

Once I took a look I put everything back together, and put all the screws back. The next step was preparing the switches. I didn’t have the special SMD LED switches, only plain Gateron brown switches. The switches I had were actually made for use directly on a PCB, so they had two extra small posts coming out of the bottom of the switch that would normally fit into matching holes in the PCB. Since I was plate-mounting these switches, and the PCB didn’t have matching holes, I had to do a little switch circumcision and snip the two posts off each switch:

Switch circumcision

The next step was to deal withy the fact that these switches were not designed to be used with SMD LEDs. The goal of those switches is to allow more light through the switch, both by having a larger hole above the LED and by having transparent switch tops. Standard Gateron switches like the ones I had are slightly translucent white plastic, but not fully transparent. Luckily I had a bag of transparent switch tops, and just needed to swap out the tops of each switch. For that purpose I have a 3D-printed switch opener that does the trick nicely:

Switch opener

It’s a little hard to tell from the picture, but basically you lower the switch on to the black plastic opener, and small wedges in the opener pry open four connection points on the switch and allow the top to be pulled up from the switch. After swapping the switch cover you can see the difference in the switch appearance:

Switch cover comparison

I also considered making a larger hole in the bottom of the switch to try to match somewhat with the switches that came with the keyboard, but I figured it didn’t matter too much since the Gateron bottoms were somewhat translucent, and the light would shine through the whole switch.

Here’s a look at the bottoms of the two switches. On the left is the Gaote switch that came with the keyboard. Note the opaque white plastic, and the large hole for the LED. It’s a little hard to see but the hole sits above a small gap that allows more room for the LED. The Gateron on the right, however, is made of translucent plastic, and has very small holes for the LED (because for these switches the LED would normally be on top, and the two contacts from the LED would pass through those tiny holes).

Bottom of Gaote and Gateron switches

One other minor modification was for the switch to be used for the space bar. It’s normal for the space bar to have a stronger spring than the other keys. I started out with a clear Gateron switch, and removed the cover, spring, and plunger from the switch. I then inserted the gold spring shown with a much higher resistance, and reinserted the plunger and added a transparent cover. I knew the space bar I was going to use didn’t have any opening for light, so putting the transparent cover on it was sort of a waste, but I figured I might as well keep it consistent.

Replacing the switch spring

This is what the switches looked like in place:

Team Wolf keyboard with brown Gateron switches close-up

They look pretty good, it’s almost a shame to cover them up with keycaps. Note that I had no trouble inserting these switches into the keyboard, event though the switches were not designed to work with SMD LEDs. It’s possible I’ll run into problems at some point because the switches are resting directly on the LEDs, although LEDs don’t generate a lot of heat, so it really should be too much of a problem.

I tested out the backlights before adding the keycaps, just to make sure they were all working:

Testing the backlights

Now that I knew all the switches were working I needed to add the keycaps. Before I could do that, however, I needed to get the stabilizers installed. Stabilizers are used by keys that are at least twice the width of a standard key. At that point the key can have problems without a stabilizer to keep the pressing of the key consistent. You don’t want there to be a problem when pressing the side of the key where the key just bends instead of pressing down the plunger on the switch. As I mentioned, I had never seen these kinds of stabilizers before, but they seemed fairly simple.

You start by removing the little plastic inserts from the old keys. Most keys have two stabilizers. Note the metal wire on either side of the stabilizer in the keyboard. You lift up the wire which is actually one U shaped wire, and position the plastic inserts onto those wires. The inserts fall into the stabilizer spaces, and when you push the keycap down all three plus-shaped pieces get pushed into the keycap (the two stabilizers and the switch itself in the middle):

Team Wolf keyboard stabs

After getting all the stabilized keys installed, started adding all the other keycaps:

Team Wolf keyboard half keycaps

These keycaps are Vortex Double-Shot PBT/POM keycaps. The black material is PBT, a higher-quality plastic than the standard ABS plastic used in most keycaps. The legends are injection-molded separately (the double-shot) out of POM, which is translucent.

Team Wolf keycaps with PBT keycaps

You can see that the legends are not the most readable. Here’s what they look like when the keyboard is plugged in:

Backlight test corner

Backlight test middle

Since these keycaps were not designed for this keyboard, the backlighting isn’t perfect. The biggest problem is that for numbers, the backlight is lighting up the shift value for each key instead of the primary value. Note how the !, @, #, etc. are all green while the numbers are not lit up at all. Here’s the full view:

Final keyboard Team Wolf

While not perfect, I’m definitely enjoying the Gateron brown switches, and I like the appearance of the Vortex PBT keycaps over the keycaps that came with the keyboard. The lack of backlight under the numbers is a bit distracting, however. It’s the same with any keycap that has two symbols on it, like the comma and period keys. You can understand now why the keycaps that came with the keyboard made the unusual design decision to put multiple symbols next to each other at the top, instead of the more standard one on top of the other. While I worked hard to maintain the backlighting, in the end it’s possible I’ll switch to regular keycaps that don’t support backlighting, to get a more consistent look for the keyboard. Maybe I’ll just switch the alphanumeric keys to standard keycaps, and leave everything else backlit. I’ll have to see if I can find keycaps that match the appearance of these Vortex keycaps, which may not be easy since these are PBT and any other keycaps I have, and most made, are ABS. One thing that bother me about the keyboard is the placement of the cable right in the middle of the case. I would have preferred to have it off to one side since I mostly work with a laptop and the cable gets in the way. A nice feature would have been to offer more than one exit point for the cable, and let the user decide which one to use.

I’m kind of amazed how much interest was generated for this keyboard by a single post in a forum. I hope Team Wolf is at least sending redditsavedmyagain some swag.

The end
Infinity ErgoDox
Standard

The evolution and commercialization of the ErgoDox keyboard

I mentioned the ErgoDox keyboard in my article A few interesting keyboards nearly in existence…. Strictly speaking, the ErgoDox was already in existence at the time (almost exactly a year ago), but as I pointed out, it wasn’t a commercial product. The ErgoDox keyboard was originally designed by Geekhack.org user Dox (aka Dominic Beauchamp), and developed in a thread started on October 10, 2011 titled ErgoDox – Custom split ergo keyboard with input from the Geekhack community. The design was based in part on the earlier Key64 concept, which itself derives its ideas from a variety of earlier keyboards, and partly from the layout of the Kinesis Advantage keyboard (in particular the thumb cluster).

The Original ErgoDox Design
The Original ErgoDox Design

What’s amazing, considering that hundreds (maybe thousands) of ErgoDox keyboards have been sold, is that Dox was originally hoping to get 5-10 people to commit to buying it to bring down his costs. When the design was completed, and the PCB finished (the PCB design was done by geekhack user bpiphany – aka Fredrik Atmer), the design was made available for free online.

 

MassDrop “Group Buys”

MassDrop ErgoDox
MassDrop ErgoDox

A kit containing all the parts needed to assemble the keyboard was made available first via MassDrop, a site that allows users to join “Group Buys” for various products, usually hard-to-get and/or very expensive electronics, that brings down the price based on how many people join the group buy. MassDrop has had several group buys of the ErgoDox in the past couple of years, offering the circuit boards (one for each hand), components (diodes, resistors, etc.), controller board (a Teensy 2.0), key switches, key caps, cables (USB for the computer, TRRS to connect the two sides), etc. The kit also contained a case made out of layered sheets of acrylic, based on a design by geekhack user Litster (the original 3D-printed case design by Dox was too expensive on a small scale).

Even though the kit components were sourced by MassDrop, and things like setting up custom keyboard layouts were made easier (by using an online configuration tool provided by Massdrop), it was still complicated to build, requiring the soldering of 76 key switches with 76 corresponding diodes, as well as many other components (resistors, LEDs, the controller board, the USB connection, the TRRS sockets, an I/O Expander chip, etc.). Additionally, the group buys didn’t provide a custom set of key caps for the ErgoDox, only optional blank keycaps. This could be explained by the infinite configurability of the keyboard layout not lending itself to a single set up for labels on their keycaps, but that is a cop-out of sorts. If the need to solder wasn’t enough of an obstacle, the lack of available keycaps was also an obstacle to wider adoption of the keyboard. Lastly, since you need to put the keyboard together yourself, there was no warranty on the keyboard available.

 

Mechanical Keyboards and Falbatech

Falbatech gold-plated ErgoDox PCB
Falbatech gold-plated ErgoDox PCB

In addition to the occasional group buy via MassDrop, ErgoDox components were also available from various sources. PCBs could be bought at Mechanical Keyboards in the US and Falbatech in Poland. Both companies also offered various case options, although many people built their own cases, either from the original Dox 3D-printed case design, Litster’s cut acrylic design, or various other custom designs. Falbatech sells a component kit with all the bits and pieces one needs to solder to the PCBs as well, although most of the parts could also be sourced from other providers such as Digikey (although not as a kit). These alternate providers made it possible for people to assemble ErgoDox keyboards whenever they wanted (and no have to wait for a new group buy on MassDrop) and also allowed users more flexibility in how they assembled the keyboards.

As people built their own ErgoDox keyboards, many modified the design to suit their own needs. Some broke out the thumb cluster and repositioned them. Some designed custom cases, even from wood. Other worked to upgrade the PCB to support LEDs on each switch. Many variations of the keyboard can be found online in groups like Geekhack, Deskthority, and r/MechanicalKeyboards.

 

The ErgoDox EZ

ErgoDox EZ
ErgoDox EZ

Last year I pointed out that it would be nice if the keyboard was manufactured in a factory and if the company that manufactured it offered support (i.e. a warranty). For many users, this is necessary. Apparently I wasn’t the only person who noticed this problem, as a couple of Israelis, Erez Zukerman and Yaara Lancet, put together a company to manufacture and support ErgoDox keyboards (dubbed the ErgoDox EZ). The EZ version of the ErgoDox is mass-produced in a factory in China, uses an injection-molded plastic case that brings down the cost, but otherwise is exactly the same as the standard ErgoDox. The PCBs are exactly the same, and the Teensy 2.0 is still used as the controller board. That last part was surprising to me because if I was going to mass-produce a keyboard, I’d want to embed the controller into the PCB for two reasons. I’d want to remove a third-party product from the final version to reduce costs (why include their markup into my base price?), and it would reduce the risk of problems caused by their manufacturing process. If someone is buying a mass-produced product, they probably don’t expect a removable controller board from another company. Of course, keeping the Teensy 2.0 board in the final product does have one major advantage – it means the company wouldn’t need to deal with any custom programming to adapt the ErgoDox software to a new controller configuration.

Keeping things simple (the only major change being the creation of a case that can be injection molded) might also explain why nothing in the key layout was changed either. Many people complained about the ErgoDox thumb cluster, for example, as not being ideally located. A whole thread on just this topic (fixing the ergodox thumb section) has generated hundreds of messages and thousands of views.

One other curious thing done by the EZ team was not including printed keycaps. Like MassDrop, the keycaps available are all blank. My opinion is that if they are looking to expand the market for the ErgoDox beyond those who can solder it together themselves, and those who want warranties, then chances are many of those people also want printed keycaps (see my article How many keys are there on a keyboard? for a discussion of the use of blank keycaps).

The ErgoDox EZ team did a pre-sale on its web site, offering the keyboard for $180 without keycaps or $190 with blank keycaps, in the run up to its IndieGoGo campaign, where the price was raised to $215 without and $235 with keycaps (plus $30 shipping). There was some promotion on the Deskthority keyboard forum (Assembled ErgoDox with warranty available for pre-order). Before promoting their IndieGoGo campaign, they offered the $180/$190 pricing on their IndieGoGo page for those who signed up earlier, then hid those levels once they launched officially. This got them about half way through the $50,000 they need to finish their campaign, which as of today (four days later) has 26 days to go.

 

The Infinity ErgoDox

Infinity ErgoDox
Infinity ErgoDox by MassDrop

Today, just days after the ErgoDox EZ launched on IndieGoGo, MassDrop dropped a bomb of sorts – a newly redesigned ErgoDox keyboard, they’ve dubbed the Infinity ErgoDox. MassDrop previously released a keyboard called the Infinity, which was created with input from the community and the professional direction of Jacob Alexander (aka HaaTa). MassDrop has an interesting article about the creation of the Infinity for those interested in the process. MassDrop took some of the lessons learned in the creation of the Infinity, much of the feedback from the community on the original ErgoDox, and created something new.

The new model outwardly looks fairly similar to the original ErgoDox (no thumb cluster change), but when looking closer, there are some significant changes. The Teensy 2.0 is gone, replaced with a built-in controller that is closer to a Teensy 3.1 in design. Each side can actually be used independently from each other, but when combined with a USB3 cable, merges into a single device. The unit connects to the computer using a simpler USB2 cable. The new design includes one obvious change, which is the addition of a small LCD screen on both sides of the keyboard. The screen is intended to be used to show different modes of the keyboard, which layout layer is activated, etc. although the software can be modified, so the screens could be used for lots of functions.

The case is still built from layered acrylic, although the plate that holds the key switches has apparently been switched to a metal plate.

Another big change which is not actually described in the group buy description, but fleshed out in the comments, is that the keyboard supports individual per-key LEDs. The original ErgoDox only supported 3 LEDs, and all on one side of the keyboard. The new Infinity ErgoDox has room in the PCB for individual LEDs for each key, and the PCB has a built-in LED controller chip to support them. The LEDs can be individually addressed and the brighten controlled. The group buy doesn’t actually include the LEDs, which is probably why they’re not mentioned in the description, but according to the responses in the comments, the hardware support is there already. It’s possible the software support for the LEDs is not ready yet, which might also explain why that was left out of the description.

Perhaps the most important change is that all of the main components are added to the PCB during manufacturing, leaving only the switches which need to be soldered. That makes the assembly of the new Infinity ErgoDox much simpler than the original ErgoDox. If you add LEDs those will also need to be soldered, but they are not necessary to the keyboard’s operation.

 

What’s next?

I’m sure the ErgoDox EZ folk were not happy to see the Infinity ErgoDox launch four days into their campaign. It’s true that the ErgoDox EZ is the only version of the ErgoDox that so far will be available with a warranty. The Infinity ErgoDox does not include a warranty. Being only half-way through their fundraising goal (with 165 contributors, compared to the 280 the Infinity ErgoDox racked up today so far) they must be sweating a bit. They have a choice – they can continue and hope to get everyone who do not want to solder their keyboard switches, and those that want a warranty – or they scrap their current design and wait for MassDrop to release the new versions of their PCB design. MassDrop has announced that the designs for the Infinity ErgoDox will be released to the public after the product ships. The estimated shipping date is June 29, 2015 – three months from now. They could wait until the after it is shipped, get the new designs, and relaunch with the new design.

A third option, and probably the best option, would be for them to add stretch goals to their existing campaign that include many of the improvements in the Infinity ErgoDox, perhaps even other improvements, and commit to include those improvements in the final product (whose ship date is currently estimated to be December 2015). They could even simply add a stretch goal to use the Infinity ErgoDox design, and then they don’t need to make any new hardware designs, they only need to create a different case (which they still haven’t made, so requires very little additional work).

In any case, it’s fascinating to see what started out as a personal design intended for a handful of people, being the basis for products manufactured by many companies (besides the 4 companies mentioned here, there are many others that have made accessories such as wrist guards and custom keycaps for the ErgoDox). I don’t know if the ErgoDox EZ will make it to production and offer the first ErgoDox with a warranty, but if it does it will be a pretty big breakthrough for community-developed keyboard designs. The improvements implemented by MassDrop are also a breakthrough of sorts, taking community designs, improving them, and releasing the changes to the public. This is the open source software world merging into the world of hardware. About time.

The end